We give a characterization of finite pointed tensor categories obtained as de-equivariantizations of the category of corepresentations of finite-dimensional pointed Hopf algebras with abelian group of group-like elements only in terms of the (cohomology class of the) associator of the pointed part. As an application we prove that every coradically graded pointed finite braided tensor category is a de-equivariantization of the category of corepresentations of a finite-dimensional pointed Hopf algebras with abelian group of group-like elements.